Title: A Framework for the Analyses and Visualization of X-ray Computed Tomography Image data using a Compute Cluster

Authors:
Jeff Wheeler1

William H. Green2

Michael Schuresko3

Michael Patrick Lowery4

1ORISE Contractor at US Army Research Laboratory, Weapons & Materials Research Division, AMSRL-WM-MB, APG, MD 21005-5069

2US Army Research Laboratory, Weapons & Materials Research Division, AMSRL-WM-MB, APG, MD 21005-5069

3Baskin School of Engineering, University of California, Santa Cruz,

1156 High Street, Santa Cruz, CA 95064

4Computational Mathematics Department, University of Califronia, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064

	A fast consistent data analyses and visualization software package has been created to assist the defense community in analyzing post penetration volumetric ballistic meso-scale damage. A library was written using open source and cross platform software application program interfaces (APIs), OpenGL™ and LAM-MPI™, to allow high performance visualization and analyses of X-ray computed tomography (XCT) image data using a cluster of computers. The cluster installation is discussed. A statistical summary of individual images is performed to determine traits in order to characterize and database common features among data sets to identify similarities and record them. The aim of this project is to streamline the production of 2d and 3d visualizations of XCT image data in a small and easy to use analytical package.

BACKGROUND
Over the past five years the successful use of nondestructive x-ray tomographic techniques to characterize and visualize ballistic impact damage in metallic and ceramic targets has been demonstrated by Wells et al. [1-4]. While two-dimensional (2-D) tomographic slice images and powerful three-dimensional (3-D) virtual solid representations are spatially very accurate and qualitatively very informative and comprehensible, they do not directly provide quantitative damage assessment data. However, over the past few years methodologies have been developed in stages to calculate quantitative damage data in various metallic and ceramic targets.

These calculations have normally been of axisymmetric damage about a center of impact or penetration cavity with multiple calculations for any number of 2-D slices in a data set being combined to produce 3-D damage plots (i.e., damage vs. radius and distance from impact) by Wheeler et al. [5]. However, the effort to do this has been time consuming and not especially efficient. This presentation will show current developments, both in software and hardware approaches, in the authors ongoing work to streamline, diversify, and make more efficient (i.e., less time consuming) quantitative ballistic damage calculations.
CLUSTER

In order to streamline the processing of XCT image data a stand-alone compute cluster was created to analyze and database the results. Various manufacturers were considered who had commercial solutions for the cluster computing needs, including Penguin Computing™ and Dell™. It was determined that the best solution, however, was not to buy an off the shelf compute cluster, but to build a compute cluster from off the shelf computers. A prototype system was built to test the feasibility of development and deployment. Four Pentium™ 500MHz Dell OptiPlex GX1™ systems were purchased as well as the required networking equipment to connect them. Red Hat Linux™ version 9.0 was used as the operating system. OSCAR™ version 4.2 was used as the cluster installation suite.

Setup

The installation of a four-node compute cluster was straight forward. All computers were networked together and attached to a KVM switch to allow them to share the same keyboard, monitor, and mouse. One node was chosen as the master node. The other three were set up as slaves. Red Hat Linux™ version 9.0 was installed on the master node using the workstation installation option, as recommended by the OSCAR™ installation instructions. Next, the cluster installation suite, OSCAR™ version 4.2, was setup using the default options.

The OSCAR™ installation suite provides the facilities to network boot the slave nodes and copy the necessary software to them to work properly and act in the cluster. Each node was powered on while the master node scanned the network for active network interface cards (NIC). Once detected, their Media Access Control (MAC) address was automatically recorded. After all nodes had been powered on, and their MAC addresses successfully placed into a list, they were rebooted and the installation completed.
To prepare this four-node computer cluster for use from start to finish took less than six hours. The time it would take to set up more nodes than this would be determined by the particular network setup between the master and slave nodes. The most time consuming steps to setup the cluster were the attaching of cables to the systems, and the installation of software on the master node. The slave node installation was simple and the least time consuming.

Parallel Programming with the Message Passing Interface (MPI)
After the cluster was setup and running the transformation of the single processor version of the image analyses program to the version in the parallel computing environment began. The image analyses program has one major loop within the code which performs the analyses. For every iteration of the loop a calculation is made based on pixels in between unique radii. These calculations are not required to be sequential.
MPI CONCEPTS

In understanding the parallelization of the code, basic concepts of MPI must be known and understood. When using MPI, messages are sent between nodes. A basic send and receive type was used in this parallel implementation of the image analyses software. The basic send is referred to as an MPI_SEND. The basic receive is referred to as an MPI_RECEIVE.

In an MPI_SEND, the relevant arguments include the location of what you are sending, its size, variable type, node to which it is being sent, and its particular rank. The rank differentiates one MPI_SEND from another, and can be assigned any of a number of values, as long as there is a matching MPI_RECEIVE. In an MPI_RECEIVE, the relevant arguments include the location the message received is to be stored, its size, variable type, node from which the message is being received, and the rank.
Information available to each node include the nodes particular ID. The compute cluster has four nodes, and their unique ID’s are numbered zero through three. The master node unique ID is zero. Also available to each node is the total number of nodes in the compute cluster.

MPI USAGE IN THE IMAGE ANALYSES SOFTWARE
The master node and slave nodes run identical code. On initialization of the program, the radii between which the program will analyze data are set. Also, the width of the annular ring segments is set. Within these annular rings, a count of the pixels is taken, as well as their value. A percent damage is determined for each annular ring. With these values as well as the values available to each node discussed in the last paragraph the total units of work and the work per node can be calculated. From this combination of variables each node is assigned a particular set of annular ring segments.

When an MPI_SEND occurs, only the slave nodes send messages and the master node receives them. This is made possible using an IF-ELSE statement. If the nodes unique ID is not 0, a message is sent, otherwise a message is received. Each slave node executes a send. The master node receives, however it needs to receive three separate messages for every send. This is accomplished by creating a loop which receives the messages from each node in turn, and stores the results.

Two MPI_SEND commands are initiated on each slave node, while six receives take place on the master node. As the slave nodes compute their particular annular ring segments, the results are stored in an array. Once this is completed, the size of the array is sent from each slave node to the master node. This send is done with the unique rank of 1 from each slave. The master node receives these sizes, and initializes an array large enough to contain the data from each slave node.

A second send occurs from each slave node. This contains the results computed from the nodes particular annular ring segments analyzed. The master node receives and stores these results.
GRAPHICS
The development of a graphics library specifically for use in the field of XCT ballistics imaging visualizations has begun and is being further developed to include more features. This library uses a general graphics framework. The visualization fits into a larger framework of scientific data collection and computation.

Data
The data visualization capabilities allow for a set of XCT data to be displayed. Slices of a 3D volume are imported as a stack of TIFF images. They are pre-processed using a python script and converted into a single binary data file. The pre-processing is necessary at this point. Plans to have the images imported directly and bypass this step are underway.
Visualization Toolkit
The graphics framework used is currently written in a combination of Microsoft™ Foundation Classes (MFC) and OpenGL™. The MFC components are fairly well abstracted from the rest of the software, and are easily ported to other operating systems. The OpenGL™ components are a collection of objects and interfaces that can be put together to form an interactive scene.
The master OpenGL™ object can take mouse event handlers and drawing objects. This particular application uses a yaw-pitch-zoom mouse handler and a volume-rendering drawing object. Other applications written in this framework have had drawing objects representing robot learning visualization, neural network function surface display, and visual models of plant growth.
Volume Rendering
The current volume rendering drawing object uses a technique called "splatting". Splatting is a sprite-based approach to volume rendering in which semi-transparent screen-aligned polygons are drawn in back-to-front order to represent the volume. Splatting is a fairly old technology, and future work on this project could involve upgrading the volume drawing object to use OpenGL 3d textures, which can render volumes on the graphics card without the visual artifacts produced when using splatting. An advantage of the 3d-texture approach would be the ability to generate arbitrary slices of the volume with little or no computation required through a simple texture-mapping trick. Each voxel is shaded by plugging the local gradient to the volume field into the lighting equation as if it were a surface normal. This sometimes helps to see structure definition inside the volume.

An interesting note on the particular volume-rendering approach used here is that a visible light transparency model was deliberately used for the volume rendering rather then an X-ray transparency model. The X-ray model would have made sense, as the data was originally acquired through an X-ray technique, however users of this visualization may see 3D volumes more clearly when the transparency model is that of the visible light spectrum that we are more accustomed to. The distinction between the two is that under the X-ray model, each voxel takes away a specific amount of intensity from the light traveling through it. In the visible light model each voxel takes away some fixed fraction of the light traveling through it.
Future Work
As the visualization library stands now, it allows the display of a single rendered scene. A second OpenGL widget will be added to allow users to view a slice of the data and depending on which slice is selected, highlight the particular pixels in the volume rendering. Also, this highlight will be a 3D movable slice and upon moving it, will update the widget just mentioned. The added functionality to translate the navigation view is being considered.
DATABASE AND PATTERN MATCHING
A destruction summary of individual images can be performed to determine total destruction per slice. These statistics can then be stored in a linked list and used as a comparison for future images, creating a reference library for classification. By isolating each slice of the image and breaking it up into smaller sub matrices, the program can step through each sub matrix in the corresponding slices to determine the amount of destruction per sub matrix on different levels of the Z-axis as well as the over all destruction of individual slices.
Breaking up a 512 x 512 Image for Analyses
Each image can be viewed as a 512 x 512 pixel matrix. By sectioning off the 512 square matrix into 32 x 32 pixel sub matrices it is possible to classify and locate the significant areas of destruction in each image. By isolating every 32 x 32 pixel square you end up with a 16 x 16 block of sub matrices in the general 512 x 512 image. These sub matrices can then be labeled as follows:
Image = {A:1+A:2+…….+H:3+H:4+……+P:15+P:16} (1)

It is then possible to step through each sub matrix and compute the percent destruction in each, eventually arriving at an average destruction percentage for the entire image as well as for each sub matrix.
Computing the Destruction Percentage
To compute the percentage destruction in each sub matrix as well as the over all destruction for the entire image we use the following algorithm:
[image: image1.emf]

 (2)
This is continued on as so, assigning each sub-matrix EX, where X  Z, a matrix containing the value associated with its current position and the remaining values denoted as zeros. Combining these values the program arrives at the following summations:

[image: image2.emf]

 (3)
Conclusions
By determining the number of pixels that are either “On” or “Off”, (black or white), the amount of destruction in each sub matrix can be determined. This sub matrix can be assigned an overall value, either on or off depending on whether or not more than 50% of the pixels are “On”. The image can be classified more by determining the average percent of destruction over the entire slice.
FUTURE GOALS

Storing these percentages in an array and creating an index pointer to each stored sub matrix and slice will allow the implementation of a linked list data structure which makes for an easily searchable library of data. When scanning new images, the library is stepped through and searched for images with similar destruction percentages. This will allow for the rapid classification of new images into previous determined groups.
CURRENT DIRECTION

Further development on the compute cluster continues. Currently basic MPI sends are used. Each node is given a specific set of tasks to complete. This does not allow machines which finish tasks first to be useful. Efforts are underway to create an MPI program for the image analyses which will distribute tasks based on which node needs work. The database and visualization concepts discussed are being ported to the cluster computing environment. Network attached storage is being discussed to allow massive amounts of data to be analyzed and stored as well as a high performance OpenGL™ visualization system. This will allow for real time analyses and visualization in a client-server fashion for OpenGL™ processing.

REFERENCES
1.
J.M. Wells, W.H. Green, N.L Rupert, J.M. Winter, Jr. J.R. Wheeler, S.J. Cimpoeru and A.V. Zibarov, “Ballistic Damage Visualization & Quantification in Monolithic Ti-6Al-4V with X-ray Computed Tomography”, 21st International Symposium on Ballistics, Adelaide, Australia, 2004.
2.
J.M. Wells, W.H. Green, and N.L.Rupert, “Non-destructive 3-D Visualization of Ballistic Impact Damage in a TiC Ceramic Target Material”, Proceedings MSMS2001, 2nd International Conference on Mechanics of Structures, University of Wollongong, Wollongong, NSW, Australia, 159-165,2001.
3.
J.M. Wells, N.L.Rupert, and W.H. Green, “Progress in the 3-D Visualization of Interior Ballistic Damage in Armor Ceramics”, Proceedings of ACERS PacRim IV Conference, Maui, Hawaii, 441-448, 2001.
4.
J.M. Wells, W.H. Green, N.L. Rupert, A. Cole, S.J. Alkemade, S.J. Cimpoeru and M. Szymczak, “Ballistic Damage Visualization in Monolithic Ti-6AL-4V with X-ray Computed Tomography”, 20th International Symposium on Ballistics, Orlando, Fl, ADPA, Vol. 2, 1112-1120, 2002.
5.
J.R. Wheeler, C. Delgado, and H.T. Miller, “Development and Application of Image Filters for Quantitative XCT Analyses”, Proceedings of ASNT 2003 Spring Research Symposium, March 10-14, Orlando, FL, 2003.

